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Constructal H-shaped cavities according to Bejan’s theory
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Received 29 September 2006
Available online 2 January 2007
Abstract

In this paper, we use Bejan’s Constructal theory to optimize the geometry of a H-shaped cavity that intrudes into a solid conducting
wall. The objective is to minimize the global thermal resistance between the solid and the cavity. Internal heat generation is distributed
uniformly throughout the solid wall. The cavity surface is isothermal, while the solid wall has adiabatic conditions on the outer surface.
The total volume and the volume of the H-shaped cavity are fixed, while the geometry of the H-shaped cavity is free to vary. Numerical
results show that the optimal H-shaped configuration performs better than an optimal T-shaped cavity. The performance of the optimal
H-shaped cavity is also superior to the performance of optimal rectangular and C-shaped cavities, which may be regarded as ‘‘elemental”
configurations. Each of the optimized cavities, C-shaped, T-shaped and H-shaped, performs better when it penetrates the solid com-
pletely: this means that the geometrical complexity must evolve in order for the global flow system performance to improve.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper documents numerically the fundamental
relation between the maximization of global performance
and the morphing architecture of a flow system. The morp-
hing configuration is a H-shaped cavity that intrudes into a
solid conducting wall. This work is an extension of the con-
structal method presented in [1,2], where we showed that
the flow geometry is malleable, and it is deduced from a
principle of global performance maximization subject to
global constraints. Design is discovered (in the sense of
Bejan’s Constructal theory [3,4]), as the result of a ‘‘perma-
nent struggle for better and better global system perfor-
mance under global constraints”.

The heat transfer literature has demonstrated how the
principle of generating flow geometry works. Recent trea-
tises on this subject [5,6] recount the evolution of cooling
techniques for compact and miniaturized packages of elec-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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tronics. The objective of the design is to install in a given
volume as much circuitry as possible, i.e. as much heat gen-
eration rate as possible. The basic global constraint is that
the package must fit into a given volume. The highest tem-
perature, i.e. the hot spot, must not exceed a specified
value: this makes the highest allowable temperature an
ulterior global constraint.

Constructal theory is a hierarchical (telescopic) way of
thinking that accounts for organization, complexity and
diversity in nature, engineering and management. In Ref.
[7], for example, it has been extended to economics. The
principle of cost minimization (maximum flow access) in
the transport of goods between a point and an area has
been investigated in order to anticipate the dendritic pat-
tern of transport routes that cover the area, and the shapes
and numbers of the interstitial areas of the dendrite. Ref.
[8] documents the fundamentals of the methods of exergy
analysis and entropy generation minimization and the gen-
eration of flow architecture. Designed porous media and
other interdisciplinary applications of the Constructal the-
ory are reported in Refs. [9–11].
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Nomenclature

A area, A = HL, m2

H height, m
H0 thickness of the cavity tip, m
H1 thickness of the vertical intrusion of the con-

struct, m
H2 stem thickness of the cavity, m
j mesh index
k solid thermal conductivity, W m�1 K�1

L length, m
L0 half- length of the cavity tip, m
L1 half- length of the vertical intrusion of the con-

struct, m
L2 stem length of the cavity, m
q000 heat generation rate per unit volume, W m�3

T temperature, K
V volume, m3

V0 cavity volume, m3

W width, m
x,y cartesian coordinates, m

Greek symbol

/ volume fraction occupied by the rectangular
territory defined by the H-shaped structure

Superscript

(�) dimensionless variables, Eqs. (5)–(7)

Subscripts

max maximum
min minimum
ref reference
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In this paper, we consider the constructal design in its
original engineering sense, by focusing on the optimization
of the architecture of an open cavity formed by a H-shaped
intrusion. Open cavities are the regions formed between
adjacent fins and they may represent essential promoters
of nucleate boiling: see, for example, the Vapotron effect
[12–14] that occurs as a consequence of the thermal interac-
tion between a non-isothermal finned surface and a fluid
locally subjected to a transient change of phase. In this
paper, we consider the morphing and optimization of the
H-shaped cavity in the most fundamental sense, without
application to a particular device or field.

According to constructal theory, in the pursuit of max-
imal global performance the cavity shape is free to change
subject to volume constraints. The global performance
indicator is the overall thermal resistance between the
volume of the entire system (cavity and solid) and the
surroundings. For simplicity and clarity, we consider
two-dimensional bodies with variable geometric aspect
ratios, the rectangular solid and the H-shaped intrusion.
Finally, in order to draw a comparison, a T-shaped cavity
and a rectangular cavity are also optimized and evaluated.
Fig. 1. Isothermal H-shaped intrusion into a two-dimensional conducting
body with uniform heat generation.
2. H-shaped construct: numerical formulation and results

Consider the two-dimensional H-shaped conducting
body shown in Fig. 1. The external dimensions (H,L) vary.
The third dimension, W, is perpendicular to the plane of
the figure. The total volume occupied by this body is fixed,

V ¼ HLW : ð1Þ

Alternatively, the area A = HL is fixed, because the config-
uration is two-dimensional. The dimensions of the cavity
(H0, L0, H1, L1, H2, L2) also vary. The cavity volume is
fixed,
V 0 ¼ ð4H 0L0 þ 2H 1L1 þ H 2L2ÞW : ð2Þ
This second constraint may be replaced by the state-
ment that the volume fraction occupied by the cavity is
fixed,

/ ¼ V 0

V
¼ 4H 0L0 þ 2H 1L1 þ H 2L2

HL
: ð3Þ

The solid is isotropic with the constant thermal conduc-
tivity k. It generates heat uniformly at the volumetric rate
q000 [W/m3]. The outer surfaces of the heat generating body



Fig. 2. Computational domain.

Table 1
Numerical tests showing the achievement of grid independence (H/L = 1,
/ = 0.1, H2/L2 = 0.15, L1/L2 = 0.6, L0/L2 = 0.6, H1/L2 = 0.75,
H0/H2 = 1.0)

Iteration Elements eT max jðeT j
max � eT jþ1

maxÞ=eT j
maxj

1 174 0.089752 2.8 � 10�2

2 696 0.092265 1.11 � 10�2

3 2784 0.093291 4.4 � 10�3

4 11,136 0.093699 –

Table 2
Comparison between the results obtained for an isothermal C-cavity in
Ref. [1] and the present numerical work (H/L = 1, / = 0.3)

H0/L0 Ref. [1] This work Relative error

1.875 0.1873 0.1873 0
1.2 0.1436 0.1435 6.964 � 10�4

0.8334 0.10865 0.1086 4.602 � 10�4

0.4686 0.06574 0.0657 6.085 � 10�4
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are perfectly insulated. The generated heat current (q000A) is
removed by cooling the wall of the cavity. The cavity wall
temperature is maintained at Tmin. Temperatures in the
solid are higher than Tmin. The hot spot of temperature
Tmax occurs at one or more points in the solid.

An important thermal design constraint is the require-
ment that temperatures must not exceed a certain level.
This makes the hot spot temperature Tmax a constraint.
The location of Tmax is not a constraint. The design calls
for installing a maximum of heat generation rate in the
fixed volume, which corresponds to packing the most elec-
tronics into a device of fixed size. In the present problem
statement, this design objective is represented by the max-
imization of the global thermal conductance q000A/
(Tmax � Tmin), or by the minimization of the global thermal
resistance (Tmax � Tmin)/(q000A).

The numerical optimization of geometry consisted of
simulating the temperature field in a large number of con-
figurations, calculating the global thermal resistance for
each configuration, and selecting the configuration with
the smallest global resistance. Symmetry allowed us to per-
form calculations in only half of the domain, y P 0. The
conduction equation for the solid region is

o2eT
o~x2
þ o2eT

o~y2
þ 1 ¼ 0; ð4Þ

where the dimensionless variables are

eT ¼ T � T min

q000A=k
; ð5Þ

ð~x;~y; eH ; eL; eH 0;eL0; eH 1;eL1; eH 2;eL2Þ ¼
ðx;y;H ;L;H 0;L0;H 1;L1;H 2;L2Þ

A1=2
:

ð6Þ

The boundary conditions are indicated in Fig. 1. The max-
imal dimensionless excess temperature, eT max, is also the
dimensionless global thermal resistance of the construct,

eT max ¼
T max � T min

q000A=k
: ð7Þ

Eq. (4) was solved with a finite elements code based on
triangular elements, developed in MATLAB environment
and using the pde (partial-differential-equations) toolbox
[15]. The domain is symmetric therefore, for the sake of
simplicity, only half of the domain was used to perform
the simulations. Fig. 2 shows the computational domain
and the geometric details. The grid was non-uniform in
both ~x and ~y directions, and varied for different geometries.
The appropriate mesh size was determined by successive
refinements, increasing the number of elements four times
from one mesh size to the next, until the criterion
jðeT j

max � eT jþ1
maxÞ=eT j

maxj < 5� 10�3 is satisfied. Here eT j
max

represents the maximum temperature calculated using the
current mesh size, and eT jþ1

max corresponds to the maximum
temperature using the next mesh, where the number of ele-
ments was increased by four times. Table 1 shows an exam-
ple of how grid independence was achieved.
The accuracy of the numerical method was also tested
by reproducing with very good agreement the results pre-
sented by Ref. [1] for the isothermal C-cavity, which is an
‘‘elemental” rectangular open intrusion into a two-dimen-
sional heat generating body. Table 2 shows several exam-
ples of this comparison.
3. Optimization of geometry

Fig. 1 reports the H-shaped cavity formed by a ‘stem’
intrusion (L2 � H2) that branches into two elemental verti-
cal intrusions (L1 � H1), having at their tips two horizontal
rectangles (2L0 � H0). We solved the conduction problem
in many configurations. The maximum temperature occurs
in the upper-left corner of the domain. The optimization of
the entire H-shaped intrusion forms the subject of this sec-
tion. After having fixed H/L = 1, the H-shaped structure
has five degrees of freedom that are represented by the
ratios L0/L2, L1/L2, H0/H2, H1/H2 and H2/L2. Conse-



Fig. 3. Flow chart illustrating the optimization process.

Fig. 4. First level of optimization: the minimization of the global thermal
resistance as function of the ratio H0/H2.
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quently, the optimization process has been divided into five
steps as shown in Fig. 3.

In the first step, we optimized the geometry by varying
the ratio H0/H2 and keeping fixed the remaining four geo-
metric parameters. Fig. 4 shows that the thermal resistance
can be minimized by selecting a particular shape of the cav-
ity, namely the one with H0/H2 = 0.16. The optimal shape
of the cavity is shown.

The procedure shown in Fig. 4 was repeated by optimiz-
ing the global thermal resistance with respect the degree of
freedom H1/H2. Fig. 5 shows the minimized global thermal
resistance, ðeT maxÞm, and its corresponding optimal ratio
(H0/H2)o. The labels ‘‘m” and ‘‘o” mean that the H-cavity
was optimized once, i.e., with respect to one degree of
freedom. Fig. 5 also shows that there is a minimal value
of ðeT maxÞm, called ðeT maxÞmm, and its corresponding opti-
mized geometric parameters are called (H0/H2)oo and
(H1/H2)o.



Fig. 5. Second level of optimization: the minimization of the global
thermal resistance as function of the ratio H1/H2.

Fig. 7. Fourth level of optimization: the minimization of the global
thermal resistance as function of the ratio L1/L2.
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The next step in the optimizing process is to plot the
optimized values obtained in simulations similar to the
one performed in Fig. 5. Fig. 6 reports the optimal values
for several values of the ratio L0/L2. The minimal global
thermal resistance revealed in Fig. 6 is very pronounced
and indicates that the ratio L0/L2 should also be examined
in the design of the H-shaped cavity. The optimal corre-
sponding shapes are also shown in Fig. 6.

Fig. 7 continues the search for better performance by
varying the next degree of freedom: L1/L2. This fourth
optimization completes the optimization for the ratio
H2/L2 = 0.15, which was fixed at the start of the sequence
shown in Figs. 4–6. Fig. 7 shows the minimal global
thermal resistance optimized three times (in three nested
loops) and its corresponding optimal shape parameters.
This figure reports that the optimal ratio (L0/L2)o is
approximately constant and very close to 1, indicating that
this branch must occupy almost completely the length of
the domain.
Fig. 6. Third level of optimization: the minimization of the global thermal
resistance as function of the ratio L0/L2.
Fig. 8 presents the last step in the optimization process.
This figure shows that the best structure is achieved when
the ratio H2/L2 becomes as small as possible. The minimal
global thermal resistance ðeT maxÞmmmm decreases, while the
optimized ratios (L1/L2)o and (L0/L2)oo decrease and
(H1/H2)ooo and (H0/H2)oooo increase. The results reported
in Fig. 8 can be correlated with accuracy smaller than 4%
by the expressions:

ðeT maxÞmmmm ¼ 0:0197
H 2

L2

� ��0:126 L0

L2

� �0:266

oo

L1

L2

� �0:097

o

� H 0

H 2

� ��0:126

ooo

H 1

H 2

� ��0:00433

ooo

; ð8Þ

H 2

L2

¼ 0:0484
H 0

H 2

� ��0:783

oooo

H 1

H 2

� ��0:108

ooo

; ð9Þ

L0

L2

� �
oo

¼ 1:44
L1

L2

� �0:529

o

: ð10Þ
Fig. 8. Fifth level of optimization: the minimization of the global thermal
resistance as function of the ratio H2/L2.



Fig. 9. The optimal configurations when H/L = 1.

Table 3
Comparison of the C-, T- and H-shaped cavities (H/L = 1, / = 0.1)

ðeT maxÞopt

C-shaped cavity 0.1008
T-shaped cavity 0.0710
H-shaped cavity 0.0245
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In Fig. 9, we drew to scale the best H-cavities obtained by
optimizing the global thermal resistance with respect to the
five degrees of freedom.

According to Constructal theory the H-cavity shown in
Fig. 1 can also be viewed as an example of a second con-
struct, i.e. a construct resulted by the combination of two
first constructs shaped as T cavities. Likewise, a T-cavity
is an assembly of two elemental volumes, the C-cavities.
Table 3 shows that the H-cavity, which is more complex,
performs approximately four times better than the elemen-
tal cavity (C-shaped cavity). The H-shaped cavity is also
almost three times more efficient than the T-shaped cavity
under the same thermal conditions, uniform heat genera-
tion, volume fraction / = 0.1, and aspect ratio H/L = 1.

4. Conclusions

This work presented the optimization of a H-shaped
cavity, which is a cavity formed by a stem intrusion
(L2 � H2) that branches into two elemental vertical intru-
sions (L1 � H1), each continued by two smaller intrusions
(2L0 � H0). The global thermal resistance was minimized
with respect to five degrees of freedom, while the total vol-
ume and the volume of the cavity were fixed. The geometry
of the H-shaped cavity was free to vary. The results showed
that the best architecture is achieved when the ratio H2/L2

becomes as small as possible. The behavior of the opti-
mized configuration and performance was correlated by
Eqs. (8)–(10) with accuracy better than 4%.

We showed that the H-shaped cavity can be construed
as a second construct, i.e. a construct resulted by the com-
bination of two first constructs, which are T-shaped. We
also showed that the T-cavity is an assembly of two ele-
mental volumes, which are C-shaped. We found that the
H-shaped cavity performs approximately four times better
than the elemental C cavity. The H cavity is almost three
times more efficient than the T cavity. This comparison
was done under the same thermal conditions, uniform heat
generation and volume fraction occupied by the cavity.

In sum, the optimized sequence of configurations
(C,T,H) shows that the geometrical complexity must evolve
in order for the flow system to improve its global
performance.
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